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SUMMARY 
A numerical solution procedure for internal three-dimensional viscous flow is proposed in this paper. The 
formulation is based on the non-primitive variables, the vorticity and potentials, on a curvilinear grid. A new 
upwind difference scheme is introduced to overcome the convective instabilities arising in the central 
difference scheme for the vorticity transport equations, while keeping false diffusion to a minimum level. 
Developing flows in both straight and curved square ducts are simulated to validate the procedure. The 
results are compared with both experimental measurements and analytical solutions. 
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1. INTRODUCTION 

A large number of numerical methods have been developed over the years to simulate laminar 
internal flows. Most of them are based on the primitive variable equations.'-* The earliest1-3 
methods were restricted to the parabolized Navier-Stokes equations. Several  modification^^-^ 
were subsequently developed for partially parabolized flows in which the viscous influence in the 
upstream direction is only transmitted by the pressure. Neither parabolized nor partially 
parabolized approaches are suitable for obtaining solutions to flows in which flow separation is 
present in the primary flow direction. To overcome such restrictions, several methods7. have also 
been developed for the solution of the full Navier-Stokes equations. These methods can be very 
expensive compared with the previous methods but have demonstrated the capability to predict 
more complex three-dimensional phenomena. 

Another class of methodsg- l 2  based on the vorticity-potential formulation can be regarded as 
the extension to three dimensions of the well-known 2D vorticity-streamfunction formulation. 
The main advantages of these methods are that the pressure is eliminated in the governing 
equation system and that the continuity equation is satisfied by a potential component of the 
velocity. Using the vorticity-potential method, Mallinson and de Vahl Davis' have simulated the 
natural convection flows in a box. In their studies the potential component of the velocity reduces 
to zero because there is no flow through the boundaries. Aregbesola and Burley" have reported 
numerical solutions of flows in a duct with one cavity formed on one wall. They computed the 
potential component of the velocity from the scalar potential function governed by a Laplacian 
equation. To simplify the calculation of the scalar potential, Wong and Reizes" have set the 
potential component of the velocity to be the streamwise mean velocity. However, this assumption 
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is restricted to straight duct geometries. Recently, Yang and CamareroI2 have proposed a general 
method for the scalar potential calculation for flows in arbitrary ducts which removes most of the 
restrictions of previous works. 

One problem remaining in the study of Yang and Camarero" is the convection instability 
arising in the central difference scheme for the vorticity transport equations at high Reynolds 
numbers. In the present paper a stable and accurate difference scheme is proposed to overcome the 
instability problem. Based on this scheme a computational procedure for general internal viscous 
flows is presented. Numerical studies of developing flows in both straight and curved square ducts 
are performed to validate the present procedure. 

2. GOVERNING EQUATIONS 

The system of equations governing a viscous, incompressible, steady state flow is 

v .  V'=O, (1) 

(2) (V' * V') V' = - V'p' + VV'2 v', 
where V' and p' are the dimensional velocity and pressure respectively and v is the kinematic 
viscosity. For the duct flow it is convenient to use the streamwise mean velocity ui at the inlet and 
the hydraulic diameter D ,  at the inlet as the normalization parameters. The governing equations 
(1) and (2) can then be non-dimensionalized as 

v .  v=o, (3) 

(V.V)V= -Vp+(l /Re)V2V, (4) 

v=v'Dh, v= V'/Vi ,  P=p'/V?, Re=DhVi/V. (5) 

where 

The vorticity-potential method is based on the decomposition of the velocity vector into 
potential and rotational components, 

V = - V ~ + V X A ,  (6) 
where 4 and A are the scalar and vector potentials. The existence of the scalar and vector 
potentials of a given velocity field has been proved by Hirasaki and He l l~ms . '~  In addition, the 
vector potential A can be required to satisfy the solenoidal condition 

V . A = O  (7) 
to simplify the application. 

into 
Using the scalar and vector potentials, the governing equations (3) and (4) can be transformed 

v24 = 0 (8) 

where W is the vorticity defined as 

w=vx v. (1 1) 

Obviously, this set of governing equations has two main advantages compared with that in 
terms of primitive variables. The continuity equation is satisfied by the scalar potential 
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independently from other variables, and the pressure, which has no explicit evaluation equation, is 
eliminated from the system. 

In order to facilitate the treatment of the boundary conditions for a general curved duct, the 
Cartesian co-ordinate system is transformed into a body-fitted curvilinear co-ordinate system. 
Details can be found in Reference 14. 

3. BOUNDARY CONDITIONS 

Unlike the primitive variables, the use of the derived variables causes some difficulties in the 
determination of the boundary conditions. Yang and CamareroI2 have reviewed this problem 
extensively and have introduced the following set of boundary conditions for the application of 
duct flows. 

Boundary conditions on 4: 
a$/an=o on the wall, 
a 4 / a n  = - ui at the inlet, 
a4/an = - U ,  at the outlet, 

where u, is the mean velocity at the outlet. 

Boundary conditions on A: 

A,=dA,/an=O on the wall, 
A,=(V, x B),, aA,/dn=O at the inlet, 

a2A/an2 = O  at the outlet, 
(13) 

where V, is the surface gradient operator and B is a vector function defined on the inlet section 
only. The vector B can be computed as 

B, = 0, V, x (V, x B,)= V,,-U~. (14) 

Boundary conditions on W: 

W=V x V on the wall, 
at the outlet. a2 W/dn2 = 0 

It should be noticed that the evaluation of the vorticity at the inlet depends on the type of 
incoming flow. For example, if the incoming flow is uniform, the vorticity at the inlet can be set to 
zero. If the incoming flow is fully developed in a straight duct, the vorticity can be computed as 

w, = a v,/ax - a vx/ay, 
where x and y represent the co-ordinates in the cross-sectional directions while z represents the 
streamwise direction. 

4. ROTATED UPWIND SCHEME 

For convection-dominated flows or high-Reynolds-number flows it is well known that central 
differences result in instabilities for the momentum and vorticity transport equations. The most 
frequently used technique to overcome this convection instability is the upwind difference scheme. 
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This ensures unconditional stability but introduces a significant truncation error, also called false 
diffusion, in multiple dimensions. To reduce the false diffusion, Raithby' has introduced the skew 
upwind difference scheme, which performs an upwind interpolation in the local streamwise 
direction for the control volume face values. The skew upwind scheme indeed reduces the false 
diffusion significantly but still suffers from the instability pr0b1em.l~ 

In order to reduce the false diffusion and still maintain unconditional stability, the conventional 
upwind scheme is applied in a locally rotated co-ordinate system. The resulting scheme is called 
the rotated upwind difference scheme, which can be briefly described as follows. At each grid node 
a rotated co-ordinate system can be established so that one co-ordinate direction coincides with 
the streamwise direction as illustrated in Figure 1. The convection terms in the vorticity transport 
equation (9) are then reduced to a one-dimensional form: 

( v -  v) w =  11 V I I  a wlas, (17) 
where s is the streamwise direction and 11 VII is the magnitude of the velocity vector. The 
conventional upwind difference scheme can be easily applied to this reduced form and the 
resulting discretization will be 

The subscripts P and U denote the grid node and the intersection of the negative s-co-ordinate line 
with the original grid surface respectively. The values of W can be interpolated from the nearest 
nodal values. 

It should be pointed out that the proposed scheme is very similar to the skew upwind scheme." 
Both schemes perform an upwind interpolation in the local streamwise direction to reduce the 
false diffusion. The essential difference is that the present scheme is based on the finite difference 
formulation in a local co-ordinate system rather than the control volume formulation. This 
ensures that the resulting algebraic system has no negative coefficients, therefore resulting in an 
unconditionally stable scheme. The drawback is that the present scheme is non-conservative. 
However, this will not cause any problem in the present application since the conservative 
character of the solution is ensured by the potential formulation. 

n 

Figure 1 .  Illustration of rotated co-ordinates 
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5. COMPUTATIONAL REMARKS 

As described above, the convection terms in the vorticity transport equation (9) are discretized by 
the rotated upwind difference scheme, while the other terms in the governing equations are all 
discretized by the central difference scheme. Details can be found in Reference 14. 

Numerical solutions of the discretized equations are obtained by the block SOR method in 
which the implicit block contains the nodes in one grid line in a cross-stream direction. The 
relaxation parameter used is about 1.5 for both the scalar and the vector potential equations, while 
the vorticity equation is underrelaxed with 0.7. 

The overall solution procedure consists of the following steps: 

(1) generation of the body-fitted grid 
(2) computation of the potential solution 
(3) computation of the viscous solution. 

The potential solution is computed by a separate computer program, which requires about 
lop5 s of CPU time per node per iteration on an IBM-4341. In the viscous solution process the 
vorticity transport equation (9) and the vector potential equation (10) are alternately solved in 
each cycle. The CPU time required is about 0.4 x 10-3 s per node per cycle on the same machine. 
The convergence criterion was set as the maximum difference in velocity between two adjacent 
cycles being less than lo-'. The total computer time required for the converged solution of a 
typical problem is about 8 min with a 15 x 15 x 31 grid. 

6. NUMERICAL RESULTS AND DISCUSSION 

6.1. Developing flow in straight duct 

Since both experimental measurements'6 and the analytical solution' ' are available for the 
developing flow in a straight square duct, numerical computations were first carried out for this 
problem to check the stability and accuracy of the present procedure. 

According to the analytical solution of Han,I7 the flow will reach a fully developed condition at 
an axial distance of 0.075 D,Re. So the non-dimensional duct length is set to be 0.102Re in the 
present test to ensure that the flow is fully developed within the duct. Figure 2 shows the duct 
geometry used in the test for Re= 100. The grid in the duct is generated algebraically in the 
following way. First 31 cross-sections are distributed along the duct axis with the following 
distribution: 

z k  = Az(k - 1)[ 1.0 + 0.8(k - ~)Az], (19) 
where zk is the location of the kth section and Az is the initial increment of 0.001 Re. Then on a 
given cross-section a uniform grid is used. 

10.2 -_I X 

-+ z 

Figure 2. Geometry of straight duct for Re= 100 
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Figure 3. Development of velocity profiles on central plane 
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Figure 4. Velocity development along duct centreline 
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In this simple geometry the potential computation is unnecessary because the exact solution of 
the scalar potential exists: 

+= - z + c ,  (20) 

where c is an arbitrary constant. For the viscous solution, two tests were first performed at 
Re = 100 using 11 x 11 and 15 x 15 grids in the cross-sections. The solution processes were quite 
stable and required about 88 and 160 cycles to obtain the converged solutions respectively. The 
maximum difference between the two results was about 4%. It was also found that further 
refinement in the grid would require considerable computer time and storage. Therefore the 
15 x 15 grid was selected in the following numerical computations. 

The streamwise velocity profiles on the central plane at the locations z/Re=0.0075, 0.02 and 
0075 are presented in Figure 3 for Re = 100 together with the experimental measurements16 and 
the analytical s~lut ion. '~  It can be seen that the computed results agree very well with the 
measurements, while the analytical solution slightly overpredicts the measurements in the duct 
centre. Figure 4 shows the development of the centreline velocity. The agreement of the computed 
results with the experiments is satisfactory. However, differences between the computed results 
and the analytical solution exist in the region from z=001Re to z=0*06Re. 

In order to see the effects of the Reynolds number, two more viscous computations were carried 
out at Re = 400 and 800. The developments of the centreline velocities for Re = 100,400 and 800 
are compared in Figure 5. The streamwise distance is normalized as z/Re in this figure. The 
differences among the curves are insignificant. This is expected to be correct since the developing 
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Figure 5. Comparison of centreline velocity for Re= 100, 400 and 800 
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Figure 6. Geometry of curved duct 
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Figure 7. Development of streamwise velocity profiles along (a) r-direction (b) z-direction 
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flow is characterized only by the dimensionless distance z/Re. Further increase in the Reynolds 
number would not cause any significant changes in the development characteristics. 

6.2. Developingjlow in curved duct 

To test the ability of the present procedure in the prediction of the streamwise curvature, 
developing flow in a curved duct of square cross-section was simulated. An important feature in 
curved duct flows is the secondary flow induced in the cross-planes as a result of the centrifugal 
forces generated by the duct curvature. It is well known that the fully developed curved duct flows 
are characterized by the Dean number De = ReD,/R, where R is the duct centreline curvature. 

The duct geometry is illustrated in Figure 6; the curvature ratio is 14 and the total turning angle 
is 102". The grid sections are distributed in a way similar to the straight duct: 

6k=A6(k- l)[l.O+O.S(k- l)A6], (21) 

where 6, is the location of the kth section and A6 is the initial increment of0.01 Re. Uniform 15 x 15 
grids are then generated in the sections. 

The scalar potential was easily computed. The converged solution was obtained after 330 
iterations with a relaxation parameter of 1.3. The viscous solution was then obtained at Re= 206, 
corresponding to De=55.  The development of the streamwise velocity profiles is shown in 
Figure 7. It is seen that the curvature has little influence on the streamwise velocities in the initial 
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Figure 8(a). Fully developed streamwise velocity profiles along r-direction 
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portion of the entrance region, and the boundary layer grows symmetrically in both cross- 
sectional directions. As the flow progresses downstream, the centrifugal forces generated by the 
curvature become more significant. Consequently, the computed profiles become more asym- 
metric along the radial direction. The peak value of the velocity shifts towards the outer curved 
wall of the duct. Along the horizontal direction the profile remains symmetric, as expected. The 
presence of a hump in this symmetric profile indicates the existence of two streamwise vortices. 

In Figure 8 the computed fully developed profiles are compared with available numerical data 
of Ghia and S ~ k h e y . ~  They used the parabolic flow assumption and a very fine 21 x 21 grid in each 
cross-section in their calculation. Good agreement can be observed between the two numerical 
results. Also shown in this figure are the experimental measurements of Mori et d.'* at De=51. 
The agreement is relatively poor between the numerical results and the measurements; the reason 
for this has not been fully explained yet. 

6.3. Flow in Humphrey's ducl 

The applicability of the present procedure to curved ducts of strong curvature was tested using 
the experiment reported by Humphrey et aL8 As shown in Figure 9, the main part of Humphrey's 
duct is a bend of square cross-section with radius ratio RID, of 2.3 and total turning angle of 90". 
Two straight extensions are added to the entrance and exit of the bend. The lengths of these 
extensions are set to  20, and 5D, in the present test rather than the 300, and 450, used in the 
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Figure 8(b). Fully developed streamwise velocity profiles along z-direction 



INTERNAL THREE-DIMENSIONAL VISCOUS FLOW 11 

0.0 

1 .o 

Figure 9. Geometry of Humphrey's duct 
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Figure lqa). Comparison of streamwise velocity contours at 0=60" 

experiment. This is reasonable since it is known from experiment that the evolution of the flow in 
the upstream part of the duct as well as the downstream extension have little effect on the flow in 
the bend. The flow Reynolds number used was 790, corresponding to a Dean number of 368. The 
inlet flow was set to be uniform. 

To generate the grid, 19 sections are uniformly distributed along the bend centreline, while in 
the inlet and outlet extensions, five and eight sections are distributed in such a way that the axial 
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step is increased by a factor of 1.25 from section to section. Again uniform 15 x 15 grids are used in 
the cross-sections. 

Figure 10 shows the streamwise velocity contours of the computed results on two typical 
sections of fl=60° and 90". Also shown in this figure are the experimental and computational 
results obtained by Humphrey et a).* Their computational results were obtained by the modified 
parabolic flow method originally developed by Gosman and Pun." In general, the two 
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Figure 11 .  Comparison of streamwise velocity profiles 



INTERNAL THREE-DIMENSIONAL VISCOUS FLOW 13 

computational results agree well, although the 15 x 15 sectional grid used in the present 
computation is relatively coarse compared with the 10 x 15 used by Humphrey et al. for half the 
duct. It is seen that the peaks indicated by the measurements are smoothed out by the 
computations because of the coarse grids, but the trends are well simulated. To  provide a close 
comparison, the streamwise velocity profiles on the central plane are presented in Figure 11. The 
computational results agree well with the experimental data, except near the end of the bend, 
where both calculations give smoother variations than the experiment. 

A very interesting phenomenon shown in the experiment of Humphrey et al. is the existence of 
two small regions of back flow symmetrically located at the outer wall between 0" and 25" of 
turning angle and close to the side walls. This phenomenon was subsequently confirmed by their 
numerical computation and also verified by the present computation. Figure 12(a) shows the 
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Figure 12(a). Streamwise velocity contours at 8= 10" 
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streamwise velocity contours on the section of 8 = 10”. In this figure the zero-velocity curve clearly 
indicates the size of this back flow region. It is also found that this region does not extend beyond 
8 = 5” and 15” in upstream and downstream directions respectively. The streamwise velocity 
profiles along the grid lines passing through the back flow region are shown in Figure 12(b). The 
maximum negative velocity is about 0.05 of the sectional mean velocity. 

7. CONCLUSIONS 

The main purpose of the present work was to develop a computational procedure to simulate 3D 
internal laminar flows. Numerical solutions have been presented for developing flows in both 
straight and curved ducts as well as in the laminar flow inside Humphrey’s duct. Computed results 
were compared with the available theoretical and numerical solutions and experimental measure- 
ments to validate the stability and accuracy of the present procedure. The essentially fair 
agreement achieved indicates that the present procedure can be used to obtain laminar duct flow 
details with an acceptable degree of accuracy. Future works include further tests for cases of blade 
passages in turbomachinery and passages of varying areas. 

APPENDIX: NOMENCLATURE 

A 

P 
Re 
vi, u, 
V 
W 

Dh 

V 

4 

vector potential 
hydraulic diameter at the inlet 
pressure 
Reynolds number 
mean velocities at inlet and outlet 
velocity 
vorticity 
kinematic viscosity 
scalar potential 
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